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Stable and unstable boundary conditions for various explicit and implicit schemes for the 
linear two-dimensional wave equations are discussed. A modal analysis is used to analyze 
stability. 

Recently much more attention has been given to the effect of boundary conditions 
on the overall stability of finite-difference calculations employing schemes which are 
stable for the pure initial value problem. The basic theoretical approach was 
established in a series of papers by Kriess [ 1, 21, Osher [ 3,4], Gustafsson et al. [5 J, 
and others. Surveys of these and more recent developments can be found in [6,7]. 

More recently Gustafsson and Oliger [8] and Yee et al. [9] considered, among 
other things, the scalar-outflow boundary condition (i.e., the numerical boundary 
condition which cannot be specified for the original PDE problem but must be given 
for the system of difference equations) in the case of a class of one-dimensional 
algorithms given by 

p(E) uj” = LltcJ(E)(u,“+ 1 - uj”- ,)/(zLlx), 
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where E is the shift operator defined by EU,” = Uy’ ‘, and p(E) and o(E) are defined 
by 

p(E)=(l tQE’-(l+X)E+< (lb) 

o(E) = BE* + (1 - 0 + #)E - 4. (lc) 

This class of algorithms contains both explicit and implicit schemes. For example, 
[= - 4, 8= 4 = 0 yields the leapfrog method and <= 4 = 0, 8= 1 yields the 
backward Euler scheme. One may find tables listing other combinations in [8,9]. The 
methods defined by Eqs. (1) solve numerically the linear partial differential equation 

u,= u,. (2) 

The constant coefficient of U, was absorbed, without loss of generality, by 
“stretching” the coordinate x. 

For the present study we consider the PDE 

U, = ;F(U) t ; G(U) (3) 

in the half space 0 <x < co, -co < y < co (t > 0), where for the purpose of the 
(linear) stability consideration we may set F = G = U, and ,I = At/Ax = AtlAy. 
Within the limitation of linear stability analysis this assumption is not severe since by 
“stretching” the x, y, and I coordinates one may account for different (constant) coef- 
ficients in partial differential equation (3). 

We investigate the effect of imposing at x = 0 the same type of extrapolations 
considered by Yee ef al. [9] and Gustafsson and Oliger [lo]. The analytical results, 
based on the Gustafsson-Kreiss-Sundstrom theorem, are obtained for the 2-D 
explicit Burstein [ 10, 1 l] and MacCormack [ 121 schemes and for the implicit 
backward Euler and Crank-Nicolson schemes. The results are summarized in the 
following sections. 

STABILITY OF TWO-DIMENSIONAL EXPLICIT SCHEMES 

We first consider the two-step explicit algorithm due to Burstein [ 10, 111. It is 
second-order accurate both in time and space and is given by 

U’+ ‘I2 = ,u,P~ U& + (At/2)(d,~u, U;,k + Q, U;,J, J,k (da) 

u;*: ’ = u;,, + At(6,,uu, UT,,: II2 + 6,,Uu, UT,,: I”). (4b) 

The difference operators 6, and 6, are defined by 

6x u.,k = c”j”+ II2,k - ui”- I,2,k)/AX and 6y uy,k = @$k+ ,,2 - uy.k- I12)/AYe 
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The averaging operators pX and ,uuy are defined by 

For the pure initial value problem the stability condition is J. < l/v?. 
At this point we would like to describe briefly the procedure for checking stability 

for the initial boundary value problem in the half space. The analysis is based on 
assuming that the finite difference equations have solutions of the type 

where the indices n, j, k are those appearing in the finite difference schemes and 
i =g. For 1~1 < 1, 1 z) > 1 indicates instability and (z / < 1 establishes stability. If 
we get a solution such that ) z / = ) K) = 1, we will check the origin of this solution, i.e., 
how does a perturbation in K affect z. 

Substituting Eq. (4a) into (4b) and using Eq. (5) one gets, after some 
manipulations, the following characteristic equation: 

K(Z - 1) = (11/4)(K - l)(K + I)(1 + COS r]) + (ci2/2)((K2 + 1) COS q - 2K) 

+ i(l/4)(K + 1)’ sin q + i(A2/2)(K - l)(~ + 1) sin r]. (6) 

Consider first the space extrapolation type of boundary condition 

U a,; = 2u;,$’ - u;,y, (7) 

where j = 0 is the boundary point. Substituting Eq. (5) into Eq. (7) we obtain the 
resolvent equation 

(K- 1)2=0 or K= 1. (8) 

Using Eq. (8) in Eq. (6) gives 

z= 1 --A’(1 -cosq)+i1sinv 

or 

lz12= 1 -212(l-cos~)+14(l -cos~)~ +I’sin’r]. 

The “worst” case is for ,I = l/G, leading to 

Iz12= 1 -f(l -COS~)2< 1. 

We thus arrive at our 

(9) 

RESULT 1. The 2-D Burstein scheme (Eq. (4)), under implicit boundary condition 
(7) is stable. 
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Note, however, that boundary condition (7) is not the only way to generalize the 
analogous 1 -D condition 

,;t”=2U;+‘-U;+‘* (10) 

Boundary condition (7) is a generalization of Eq. (10) which is taken in a direction 
normal to the boundary x = 0. A more general analogy to Eq. (10) would be taken in 
a skewed direction, for example 

u ,,;I = 2u);,;:, - u;,‘,:,. (11) 

In fact, sometimes such “skewed” extrapolations are indeed used. For example, if a 
shock wave intersects the boundary at some angle, near the intersection skewed 
extrapolation is sometimes used to avoid differencing across the shock. We now ask 
what is the effect of Eq. (11) on the stability of the Burstein scheme (Eq. (4)). Using 
Eq. (5) in Eq. (11) we get 

(h-e’” - I)‘=0 or K = e-in. (12) 

We shall now show 

RESULT 2. The 2-D Burstein scheme (Eq. (4)) un d er skewed boundary condition 
(11) is unstable. 

It will suffice to provide a counterexample to stability. Take q = rc, i.e., from 
Eq. (12), K = -1. Equation (6) becomes z = 1 since sin q = 0 and cos q= - 1. We 
thus have to invoke the perturbation procedure around K = -1, z = 1. Set 

z=l+&, K=-1-J 

and substitute into Eq. (6). A simple calculation shows that 6 = +(\/z/L) \/F + 
0(e/A2), and we have instability. 

Another type of boundary condition considered in [S, 91 was the space time 
extrapolation 

qy=2q- (J-‘. (13) 

Its “normal” and “skewed” generalizations to the two-dimensional case are, respec- 
tively, 

U o”,p = 2UT.k - u;*i’ (14) 

and 

(15) 

leading to K = z and K = zeeiV respectively. Computations analogous to those carried 
above yield similar results; namely, 
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RESULT 3. The 2-D Burstein (Eq. (4)) scheme under boundary condition (14) is 
stable. 

RESULT 4. The 2-D Burstein (Eq. (4)) scheme under boundary condition (15) is 
unstable. 

Next we consider the two step 2-D MacCormack scheme [ 121, 

UjTk = Ujlk + WJ;,,,, - UT,k) + WJ;,,,, - u;,,>, 
q,* = UjTk+A(U&- Ujc,,J+qUjTk- UjTk-,), 

u?+I12 = f(U,“,,, + u&y, 
J.k 

uf 
J.k 

= Ulf II2 + quy,,: “2 - u;+,‘,$ + quy,; “2 - fJ;y;>, 
J.k (16) 

‘,?k = ul.k + ‘(q;+,,k - $,k> + n(v;,k+ I - u;.kh 

u;,; ’ = +<u;,: ‘I2 + Uj’.\), 

which is stable for the pure initial value problem under the condition ,I < 1. 
Substituting Eq. (5) into Eq. (16) gives the characteristic equation 

z = (1 + @/2)(K - (l/~)) + (A2/2)(k- + (l/rc) - 2))(1 + iJ sin r7 - A2(1 - cos v)). 

(17) 

Modal analysis carried out as above yields 

RESULT 5. The MacCormack scheme (Eq. (16)) is stable under all the above 
mentioned boundary conditions (Eqs. (7), (1 l), (14), and (15)). 

STABILITY OF THE TWO-DIMENSIONAL IMPLICIT SCHEMES 

The 2-D implicit backward Euler scheme that solves Eq. (3) may be written as 

vi”,,: ’ = u;,k + At(b,& + &$) uj”,,: I* (18) 

Usually, however, it is put in a time split, or approximate-factorization form’ 

(1 - At 6,pJ( 1 - At S,,pJ Ui”.; ’ = UJ’k. (19) 

Substituting Eq. (5) into Eq. (19) gives the characteristic equation 

z[ 1 - (A/~)(K - (l/~))][l - iL sin r] = 1. (20) 

’ It may be shown that all forthcoming results hold also for the nonsplit form of the difference 
equations. Also, putting Eq. (19) in the delta-form will not change the linear stability considerations. 
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We now consider Eq. (20) under the various boundary conditions of Eqs. (7) (1 1), 
(14), and (15). The computations for the case of Eq. (7) are trivial and we get from 

Eq. (20) 

~(1 - iL sin r) = 1. (21) 

For v = 0, Eq. (21) reduces to the 1-D case that was shown to be stable [S]. For 
0 < v ( 71, the factor (1 - i,I sin r) is greater than 1 in magnitude and hence ] z 1 < 1 
for that case. There remains to examine the case q = 71, in which case we get 
z = K = 1. The perturbation procedure of putting z = 1 + E, K = 1 f 6, q = ?r into 
Eq. (20) leads directly to E = 16 and hence to our 

RESULT 6. The 2-D backward Euler scheme (Eq. (18)) under boundary condition 
(7) is stable. 

Next consider the skewed extrapolation (Eq. (11)) i.e., K = ec”‘, and take r] = 71, 
i.e., K = -1. We find again that z = 1. Now we have to perturb about z = 1, K = - 1, 

q = 71. Substituting z = 1 + E, K = -1 - 6 into Eq. (20) gives E = --A6 and thus, 

RESULT 7. The 2-D backward Euler scheme (Eq. 18) under boundary condition 
(11) is unstable. 

Next consider the space-time extrapolation (Eq. (14)). Again, since the factor 
(I - i2 sin ‘1) is at most unity, the I-D analysis holds and we have 

RESULT 8. The 2-D backward Euler scheme (Eq. 18) under boundary condition 
(14) is stable. 

For the skewed space time extrapolation (Eq. (15)) we put (for 7 = n) 
z = Ke-iQ = -K. Substitution into Eq. (20) yields a quadratic equation in z whose 
solutions are z = 1 and z = - 1 - (2/L). Since ] IC 1 = I z ], the second root is stable, but 
we also have to investigate once more the case z = 1, K = - 1. The calculation is iden- 
tical to that which led to Result 7 and thus we have 

RESULT 9. The 2-D backward Euler scheme (Eq. (18)) under boundary condition 
(15) is unstable. 

The 2-D implicit Crank-Nicolson scheme has the following time-split form: 

(1 - ;At &)(l - jAt +,) Uj”.:’ = (1 + $At 6,pJ(l + ;At 6,p,,) u;.k. (22) 

Using Eq. (5) leads to the characteristic equation 

z( 1 - $k(K - (l/k)))( 1 - fi2 sin ~7) = (1 + @.(K - (l/~)))( 1 + ;iL sin 17). (23) 

Analysis completely analogous to that carried in the preceding section gives also 
analogous results, namely, 
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RESULT 10. The 2-D Crank-Nicolson scheme (Eq. (22)) under boundary 
condition (7) is stable under the one-dimensional restriction of J. = 2 [ 9 I. 

RESULT 11. The 2-D Crank-Nicolson scheme (Eq. (22)) under boundary 
condition (11) is unstable. 

RESULT 12. The 2-D Crank-Nicolson scheme (Eq. (22)) under boundary 
condition (14) is stable. 

RESULT 13. The 2-D Crank-Nicolson scheme (Eq. (22) under boundary 
condition (15) is unstable. 

SUMMARY 

The present study applies modal analysis to the two-dimensional linear wave 
equation in half space in order to investigate the effect on numerical stability of 
outflow-type boundary conditions. 

The boundary conditions under investigation may be considered as 2-D 
generalizations of 1-D conditions which were studied by Gustafsson and Oliger [S 1. 
This generalization is not unique. Thus, for example, the space-time extrapolation in 
l-D, Eq. (13), may be considered as extrapolation along the characteristic. The true 
characteristic extrapolation in 2-D is the skewed boundary condition of Eq. (15), but 
we also consider its projection on the x - t plane, Eq. (14). 

We consider the boundary conditions for four typical algorithms. Two of them are 
explicit (Burstein and MacCormack) and two are implicit (backward Euler and 
Crank-Nicolson). 

The major results may be summarized as follows: 

(i) The boundary conditions of Eqs. (7) and (14) in which the extrapolation is 
taken normal to the y-t plane are stable for all cases. In this sense they seem to be the 
proper generalization from the 1-D case. 

(ii) The boundary conditions of Eqs. (11) and (15) in which the extrapolation 
is taken along the characteristic (Eq. (15)) or its projection on the t-constant plane 
(Eq. (11)) are unstable for all schemes except the split MacCormack. This may be 
explained by noting that for the pure initial value problem the Burstein, backward 
Euler, and Crank-Nicolson algorithms are not dissipative at the point r = q = n; <, 7 
being the dual Fourier variables. The MacCorniack scheme, however, is strictly 
dissipative, i.e., its amplification factor G is less than unity for all 0 < <, v < 7t (at 
5 = v = 0 consistency demands that G = 1). 

Gas dynamic computations require solving sets of nonlinear equations represented 
by Eq. (3). It is expected, however, that the results of the modal analysis of the 
linearized model equation will help in the selection of stable numerical boundary 
conditions. A parallel study at MIT by Thompkins and Bush [ 131 is presented 
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elsewhere in these proceedings. The study involves the solution of the 2-D Euler 
equations for cascade geometries using a backward Euler scheme which is uncon- 
ditionally stable for the linear pure initial value problem. When some extrapolation 
boundary conditions are done explicitly, the computations are unstable for Courant 
numbers exceeding about 2. When all extrapolation boundary conditions are done 
implicitly and normal to the boundary (i.e., not skewed), however, stability is 
improved to the point that the maximum practical Courant number is limited by 
other factors. In an unpublished study by Thompkins and Tong, calculations for the 
same geometry and equations but using the explicit MacCormack scheme have shown 
that the characteristic extrapolation normal to the boundary (represented by Eq. (14) 
in the present study) is stable. These computational results in agreement with the 
modal analysis are encouraging. 
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